Verschieben von durchschnittlichen und exponentiellen Glättungsmodellen Als ein erster Schritt zum Überfahren von Mittelwertsmodellen, Zufallswegmodellen und linearen Trendmodellen können nicht-saisonale Muster und Trends mittels eines gleitenden Durchschnitts - oder Glättungsmodells extrapoliert werden. Die grundlegende Annahme hinter Mittelwertbildung und Glättungsmodellen ist, dass die Zeitreihe lokal stationär mit einem sich langsam verändernden Mittelwert ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-ohne-Drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als "quotsmoothedquot" - Version der ursprünglichen Serie bezeichnet, da die kurzzeitige Mittelung die Wirkung hat, die Stöße in der ursprünglichen Reihe zu glätten. Durch Anpassen des Glättungsgrades (die Breite des gleitenden Durchschnitts) können wir hoffen, eine Art von optimaler Balance zwischen der Leistung des Mittelwerts und der zufälligen Wandermodelle zu erreichen. Die einfachste Art der Mittelung Modell ist die. Einfache (gleichgewichtige) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Mittelwert der letzten m Beobachtungen: (Hier und anderswo werde ich das Symbol 8220Y-hat8221 stehen lassen Für eine Prognose der Zeitreihe Y, die am frühestmöglichen früheren Zeitpunkt durch ein gegebenes Modell durchgeführt wird.) Dieser Mittelwert wird auf den Zeitraum t (m1) 2 zentriert, was impliziert, daß die Schätzung des lokalen Mittels dazu neigt, hinter dem wahr zu liegen Wert des lokalen Mittels um etwa (m1) 2 Perioden. Somit ist das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (m1) 2 relativ zu der Periode, für die die Prognose berechnet wird, angegeben: dies ist die Zeitspanne, in der die Prognosen dazu tendieren, hinter den Wendepunkten der Daten zu liegen . Wenn Sie z. B. die letzten 5 Werte mitteln, werden die Prognosen etwa 3 Perioden spät sein, wenn sie auf Wendepunkte reagieren. Beachten Sie, dass, wenn m1, die einfache gleitende Durchschnitt (SMA) - Modell ist gleichbedeutend mit der random walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar der Länge des Schätzzeitraums), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um den besten Quotienten der Daten zu erhalten, d. H. Die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel einer Reihe, die zufällige Fluktuationen um ein sich langsam veränderndes Mittel zu zeigen scheint. Erstens können wir versuchen, es mit einem zufälligen Fußmodell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff entspricht: Das zufällige gehen Modell reagiert sehr schnell auf Änderungen in der Serie, aber dabei nimmt sie einen Großteil der quotnoisequot in der Daten (die zufälligen Fluktuationen) sowie das Quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen anwenden, erhalten wir einen glatteren Satz von Prognosen: Der 5-Term-einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Wegmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zu liegen. (Zum Beispiel scheint ein Rückgang in Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich erst um einige Zeit später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie beim zufälligen Weg Modell. Somit geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während jedoch die Prognosen aus dem Zufallswegmodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Mittelwert der neueren Werte. Die von Statgraphics berechneten Konfidenzgrenzen für die Langzeitprognosen des einfachen gleitenden Durchschnitts werden nicht breiter, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht richtig Leider gibt es keine zugrunde liegende statistische Theorie, die uns sagt, wie sich die Vertrauensintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Konfidenzgrenzen für die längerfristigen Prognosen zu berechnen. Beispielsweise können Sie eine Tabellenkalkulation einrichten, in der das SMA-Modell für die Vorhersage von 2 Schritten im Voraus, 3 Schritten voraus usw. innerhalb der historischen Datenprobe verwendet wird. Sie könnten dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addieren und Subtrahieren von Vielfachen der geeigneten Standardabweichung konstruieren. Wenn wir einen 9-Term einfach gleitenden Durchschnitt versuchen, erhalten wir sogar noch bessere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt jetzt 5 Perioden ((91) 2). Wenn wir einen 19-term gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10 an: Beachten Sie, dass die Prognosen tatsächlich hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welches Maß an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistiken vergleicht, darunter auch einen 3-Term-Durchschnitt: Modell C, der 5-Term-Gleitender Durchschnitt, ergibt den niedrigsten Wert von RMSE mit einer kleinen Marge über die 3 - term und 9-Term-Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Rückkehr nach oben.) Browns Einfache Exponentialglättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, daß es die letzten k-Beobachtungen gleich und vollständig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die zweitletzte erhalten, und die 2. jüngsten sollten ein wenig mehr Gewicht als die 3. jüngsten erhalten, und bald. Das einfache exponentielle Glättungsmodell (SES) erfüllt dies. 945 bezeichnen eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Serie L zu definieren, die den gegenwärtigen Pegel (d. H. Den lokalen Mittelwert) der Serie, wie er aus Daten bis zu der Zeit geschätzt wird, darstellt. Der Wert von L zur Zeit t wird rekursiv von seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorher geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf die neueste steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert: Äquivalent können wir die nächste Prognose direkt in Form früherer Prognosen und früherer Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose durch Anpassung der bisherigen Prognose in Richtung des bisherigen Fehlers um einen Bruchteil 945 erhalten Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Abzinsungsfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu verwenden, wenn Sie das Modell in einer Tabellenkalkulation implementieren Einzelne Zelle und enthält Zellverweise, die auf die vorhergehende Prognose, die vorherige Beobachtung und die Zelle mit dem Wert von 945 zeigen. Beachten Sie, dass, wenn 945 1, das SES-Modell zu einem zufälligen Weg-Modell (ohne Wachstum) äquivalent ist. Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, wobei angenommen wird, dass der erste geglättete Wert gleich dem Mittelwert gesetzt ist. (Zurück zum Seitenanfang.) Das Durchschnittsalter der Daten in der Simple-Exponential-Smoothing-Prognose beträgt 1 945, bezogen auf den Zeitraum, für den die Prognose berechnet wird. (Dies sollte nicht offensichtlich sein, kann aber leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher zu Verzögerungen hinter den Wendepunkten um etwa 1 945 Perioden. Wenn beispielsweise 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Eine Verzögerung) ist die einfache exponentielle Glättungsprognose (SES) der simplen gleitenden Durchschnittsprognose (SMA) etwas überlegen, weil sie relativ viel mehr Gewicht auf die jüngste Beobachtung - i. e stellt. Es ist etwas mehr quresponsivequot zu Änderungen, die sich in der jüngsten Vergangenheit. Zum Beispiel haben ein SMA - Modell mit 9 Terminen und ein SES - Modell mit 945 0,2 beide ein durchschnittliches Alter von 5 Jahren für die Daten in ihren Prognosen, aber das SES - Modell legt mehr Gewicht auf die letzten 3 Werte als das SMA - Modell und am Gleiches gilt für die Werte von mehr als 9 Perioden, wie in dieser Tabelle gezeigt: 822forget8221. Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der kontinuierlich variabel ist und somit leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Serie ergibt sich wie folgt: Das durchschnittliche Alter der Daten in dieser Prognose beträgt 10.2961 3,4 Perioden, was ähnlich wie bei einem 6-term einfachen gleitenden Durchschnitt ist. Die Langzeitprognosen aus dem SES-Modell sind eine horizontale Gerade. Wie im SMA-Modell und dem Random-Walk-Modell ohne Wachstum. Es ist jedoch anzumerken, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftigen Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das Zufallswegmodell. Das SES-Modell geht davon aus, dass die Reihe etwas vorhersehbarer ist als das Zufallswandermodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So dass die statistische Theorie der ARIMA-Modelle eine solide Grundlage für die Berechnung der Konfidenzintervalle für das SES-Modell bildet. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht sonderbaren Differenz, einem MA (1) - Term und kein konstanter Term. Ansonsten als quotARIMA (0,1,1) - Modell ohne Konstantquot bekannt. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Größe 1 - 945 im SES-Modell. Wenn Sie zum Beispiel ein ARIMA-Modell (0,1,1) ohne Konstante an die hier analysierte Serie anpassen, ergibt sich der geschätzte MA (1) - Koeffizient auf 0,7029, was fast genau ein Minus von 0,2961 ist. Es ist möglich, die Annahme eines von Null verschiedenen konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Dazu wird ein ARIMA-Modell mit einer nicht sonderbaren Differenz und einem MA (1) - Term mit konstantem, d. H. Einem ARIMA-Modell (0,1,1) mit konstantem Wert angegeben. Die langfristigen Prognosen haben dann einen Trend, der dem durchschnittlichen Trend über den gesamten Schätzungszeitraum entspricht. Sie können dies nicht in Verbindung mit saisonalen Anpassungen tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA gesetzt ist. Sie können jedoch einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Prognoseverfahren verwenden. Die prozentuale Zinssatzquote (prozentuale Wachstumsrate) pro Periode kann als der Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmuswandlung angepasst ist, oder es kann auf anderen unabhängigen Informationen bezüglich der langfristigen Wachstumsperspektiven beruhen . (Rückkehr nach oben.) Browns Linear (dh doppelt) Exponentielle Glättung Die SMA-Modelle und SES-Modelle gehen davon aus, dass es in den Daten keine Tendenzen gibt (die in der Regel in Ordnung sind oder zumindest nicht zu schlecht für 1- Wenn die Daten relativ verrauscht sind), und sie können modifiziert werden, um einen konstanten linearen Trend, wie oben gezeigt, zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen das Rauschen auszeichnet, und wenn es notwendig ist, mehr als eine Periode vorher zu prognostizieren, könnte die Schätzung eines lokalen Trends auch sein Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl des Niveaus als auch des Trends berechnet. Das einfachste zeitvariable Trendmodell ist Browns lineares exponentielles Glättungsmodell, das zwei verschiedene geglättete Serien verwendet, die zu verschiedenen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine weiterentwickelte Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des Brown8217s linearen exponentiellen Glättungsmodells, wie die des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von unterschiedlichen, aber äquivalenten Formen ausgedrückt werden. Die quadratische quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einfacher exponentieller Glättung auf Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern wir uns, Exponentielle Glättung, dies wäre die Prognose für Y in der Periode t1.) Dann sei Squot die doppelt geglättete Reihe, die man erhält, indem man eine einfache exponentielle Glättung (unter Verwendung desselben 945) auf die Reihe S anwendet: Schließlich die Prognose für Ytk. Für jedes kgt1 ist gegeben durch: Dies ergibt e & sub1; & sub0; (d. h. Cheat ein Bit und die erste Prognose der tatsächlichen ersten Beobachtung gleich) und e & sub2; Y & sub2; 8211 Y & sub1; Nach denen die Prognosen unter Verwendung der obigen Gleichung erzeugt werden. Dies ergibt die gleichen Anpassungswerte wie die Formel auf der Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination von exponentieller Glättung mit saisonaler Anpassung veranschaulicht. Holt8217s Lineares Exponentialglättung Brown8217s LES-Modell berechnet lokale Schätzungen von Pegel und Trend durch Glätten der letzten Daten, aber die Tatsache, dass dies mit einem einzigen Glättungsparameter erfolgt, legt eine Einschränkung für die Datenmuster fest, die es anpassen kann: den Pegel und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem durch zwei Glättungskonstanten, eine für die Ebene und eine für den Trend. Zu jedem Zeitpunkt t, wie in Brown8217s-Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem zum Zeitpunkt t beobachteten Wert von Y und den vorherigen Schätzungen von Pegel und Trend durch zwei Gleichungen berechnet, die exponentielle Glättung separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der tatsächliche Wert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv berechnet, indem zwischen Y tshy und seiner Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1- 945 interpoliert wird. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine verrauschte Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv berechnet, indem zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 interpoliert wird. Unter Verwendung der Gewichte von 946 und 1-946: Die Interpretation der Trendglättungskonstanten 946 ist analog zu der Pegelglättungskonstante 945. Modelle mit kleinen Werten von 946 nehmen an, dass sich der Trend mit der Zeit nur sehr langsam ändert, während Modelle mit Größere 946 nehmen an, dass sie sich schneller ändert. Ein Modell mit einem großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, da Fehler in der Trendschätzung bei der Prognose von mehr als einer Periode ganz wichtig werden. (Rückkehr nach oben) Die Glättungskonstanten 945 und 946 können auf übliche Weise geschätzt werden, indem der mittlere quadratische Fehler der 1-Schritt-Voraus-Prognosen minimiert wird. Wenn dies in Statgraphics getan wird, erweisen sich die Schätzungen als 945 0.3048 und 946 0,008. Der sehr geringe Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung im Trend von einer Periode zur nächsten annimmt, so dass dieses Modell im Grunde versucht, einen langfristigen Trend abzuschätzen. Analog zur Vorstellung des Durchschnittsalters der Daten, die bei der Schätzung der lokalen Ebene der Reihe verwendet werden, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, proportional zu 1 946, wenn auch nicht exakt gleich . In diesem Fall erweist sich dies als 10.006 125. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 nicht wirklich 3 Dezimalstellen beträgt, aber sie ist von der gleichen Größenordnung wie die Stichprobengröße von 100 Dieses Modell ist Mittelung über eine ziemlich große Geschichte bei der Schätzung der Trend. Das Prognose-Diagramm unten zeigt, dass das LES-Modell einen etwas größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Außerdem ist der Schätzwert von 945 fast identisch mit dem, der durch Anpassen des SES-Modells mit oder ohne Trend erhalten wird, so dass dies fast das gleiche Modell ist. Nun, sehen diese aussehen wie vernünftige Prognosen für ein Modell, das soll Schätzung einer lokalen Tendenz Wenn Sie 8220eyeball8221 dieser Handlung, sieht es so aus, als ob der lokale Trend nach unten am Ende der Serie gedreht hat Was ist passiert Die Parameter dieses Modells Wurden durch Minimierung des quadratischen Fehlers von 1-Schritt-Voraus-Prognosen, nicht längerfristigen Prognosen, abgeschätzt, wobei der Trend keinen großen Unterschied macht. Wenn alles, was Sie suchen, 1-Schritt-vor-Fehler sind, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trendglättungskonstante manuell anpassen, so dass sie eine kürzere Basislinie für die Trendschätzung verwendet. Wenn wir beispielsweise 946 0,1 setzen, beträgt das durchschnittliche Alter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so mitteln. Here8217s, was das Prognose-Plot aussieht, wenn wir 946 0,1 setzen, während 945 0,3 halten. Dies scheint intuitiv vernünftig für diese Serie, obwohl es wahrscheinlich gefährlich, diesen Trend mehr als 10 Perioden in der Zukunft zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber ähnliche Ergebnisse (mit etwas mehr oder weniger Reaktionsfähigkeit) werden mit 0,5 und 0,2 erhalten. (A) Holts linearer Exp. Glättung mit alpha 0.3048 und beta 0,008 (B) Holts linear exp. Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl auf der Basis machen können Von 1-Schritt-Vorhersagefehlern innerhalb der Datenprobe. Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir glauben, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zugrunde zu legen, können wir für das LES-Modell mit 945 0,3 und 946 0,1 einen Fall machen. Wenn wir agnostisch sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein, und würde auch für die nächsten 5 oder 10 Perioden mehr Mittelprognosen geben. (Rückkehr nach oben.) Welche Art von Trend-Extrapolation am besten ist: horizontal oder linear Empirische Evidenz deutet darauf hin, dass es, wenn die Daten bereits für die Inflation angepasst wurden (wenn nötig), unprätent ist, kurzfristige lineare Werte zu extrapolieren Trends sehr weit in die Zukunft. Die heutigen Trends können sich in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, verstärkte Konkurrenz und konjunkturelle Abschwünge oder Aufschwünge in einer Branche abschwächen. Aus diesem Grund führt eine einfache exponentielle Glättung oft zu einer besseren Out-of-Probe, als ansonsten erwartet werden könnte, trotz ihrer quotnaivequot horizontalen Trend-Extrapolation. Damped Trendmodifikationen des linearen exponentiellen Glättungsmodells werden in der Praxis häufig auch eingesetzt, um in seinen Trendprojektionen eine Note des Konservatismus einzuführen. Das Dämpfungs-Trend-LES-Modell kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA-Modells (1,1,2), implementiert werden. Es ist möglich, Konfidenzintervalle um langfristige Prognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem man sie als Spezialfälle von ARIMA-Modellen betrachtet. (Achtung: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt ab von (i) dem RMS-Fehler des Modells, (ii) der Art der Glättung (einfach oder linear) (iii) dem Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der Perioden vor der Prognose. Im Allgemeinen breiten sich die Intervalle schneller aus, da 945 im SES-Modell größer wird und sich viel schneller ausbreiten, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im Abschnitt "ARIMA-Modelle" weiter erläutert. (Zurück zum Seitenanfang.) 5.2 Glättungszeitreihe Die Glättung erfolgt in der Regel, um Muster, Trends zB in Zeitreihen besser zu sehen. Im Allgemeinen glätten Sie die unregelmäßige Rauheit, um ein klareres Signal zu sehen. Für saisonale Daten, könnten wir glätten die Saisonalität, so dass wir den Trend identifizieren können. Smoothing stellt uns nicht mit einem Modell, aber es kann ein guter erster Schritt bei der Beschreibung der verschiedenen Komponenten der Serie. Der Begriff Filter wird manchmal verwendet, um ein Glättungsverfahren zu beschreiben. Wenn zum Beispiel der geglättete Wert für eine bestimmte Zeit als eine lineare Kombination von Beobachtungen für Umgebungszeiten berechnet wird, kann man sagen, dass wir ein lineares Filter auf die Daten angewandt haben (nicht dasselbe wie das Ergebnis, dass das Ergebnis eine gerade Linie ist der Weg). Die traditionelle Verwendung des Begriffs gleitender Durchschnitt ist, dass wir zu jedem Zeitpunkt (möglicherweise gewichtete) Mittelwerte der beobachteten Werte bestimmen, die eine bestimmte Zeit umgeben. Zum Zeitpunkt t. Ein zentrierter gleitender Durchschnitt der Länge 3 mit gleichen Gewichten wäre der Mittelwert der Werte zu Zeiten t -1. T. Und t1. Um Saisonalität aus einer Serie wegzunehmen, so können wir besser sehen Trend, würden wir einen gleitenden Durchschnitt mit einer Länge Saisonspanne verwenden. Somit wurde in der geglätteten Reihe jeder geglättete Wert über alle Jahreszeiten gemittelt. Dies kann getan werden, indem man einen einseitigen gleitenden Durchschnitt betrachtet, in dem Sie alle Werte für die Werte der letzten Jahre oder einen zentrierten gleitenden Durchschnitt, in dem Sie Werte sowohl vor als auch nach der aktuellen Uhrzeit verwenden, mittlere. Für vierteljährliche Daten können wir beispielsweise einen geglätteten Wert für die Zeit t als (x t x t - 1 x t - 2 x t - 3) 4, den Durchschnitt dieser Zeit und die vorhergehenden 3 Quartale, definieren. Im R-Code ist dies ein einseitiger Filter. Ein zentrierter gleitender Durchschnitt erzeugt ein wenig Schwierigkeit, wenn wir eine gerade Anzahl von Zeitperioden in der Saisonspanne haben (wie wir es normalerweise tun). Um Saisonalität in vierteljährlichen Daten zu glätten. Um Trend zu identifizieren, ist die übliche Konvention, den gleitenden Durchschnitt des gleitenden Mittels zum Zeitpunkt t zu verwenden, um Saisonalität in den Monatsdaten weg zu glätten. Um den Trend zu identifizieren, besteht die übliche Konvention darin, den zum Zeitpunkt t geglätteten gleitenden Durchschnitt zu verwenden. Das heißt, wir setzen das Gewicht 124 auf Werte zu Zeiten t6 und t6 und Gewicht 112 auf alle Werte zu allen Zeiten zwischen t5 und t5. In der R-Filter-Befehl, auch einen zweiseitigen Filter, wenn wir Werte, die sowohl vor als auch nach der Zeit, für die Glättung wurden verwendet werden. Beachten Sie, dass auf Seite 71 unseres Buches die Autoren gleiche Gewichte über einen zentrierten saisonalen gleitenden Durchschnitt anwenden. Das ist auch okay. Zum Beispiel kann eine vierteljährliche Glättung zum Zeitpunkt t geglättet werden. Fraktal x frac x frac xt frac x frac x Ein monatlich glatter kann ein Gewicht von 113 auf alle Werte von Zeiten t-6 bis t6 anwenden. Der Code, den die Autoren auf Seite 72 verwenden, nutzt einen rep-Befehl, der einen Wert eine bestimmte Anzahl von Malen wiederholt. Sie verwenden nicht den Filterparameter innerhalb des Filterbefehls. Beispiel 1 Vierteljährliche Bierproduktion in Australien In Lektion 1 und Lektion 4 haben wir eine Reihe von vierteljährlichen Bierproduktionen in Australien betrachtet. Der folgende R-Code erzeugt eine geglättete Reihe, die es ermöglicht, das Trendmuster zu sehen und dieses Trendmuster auf demselben Graphen wie die Zeitreihen aufzuzeichnen. Der zweite Befehl erstellt und speichert die geglättete Serie im Objekt namens trendpattern. Beachten Sie, dass innerhalb des Filterbefehls der Parameter namens filter die Koeffizienten für unsere Glättung und die Seiten 2 eine zentrierte Glättung ergibt. Beerprod scan (beerprod. dat) trendpattern filter (beerprod, filter c (18, 14, 14, 14, 18), seiten2) zeichnung (beerprod, typ b, hauptbewegter durchschnittlicher jährlicher trend) zeilen (trendpattern) Könnte das Trendmuster von den Datenwerten subtrahieren, um einen besseren Einblick in die Saisonalität zu erhalten. Das Ergebnis: Eine weitere Möglichkeit zur Glättung von Reihen, um Trend zu sehen, ist der einseitige Filter trendpattern2 filter (beerprod, filter c (14, 14, 14, 14), Seiten 1) Damit ist der geglättete Wert der Durchschnitt des vergangenen Jahres. Beispiel 2. U. S. Monatliche Arbeitslosigkeit In den Hausaufgaben für Woche 4 sahen Sie eine monatliche Reihe von US-Arbeitslosigkeit für 1948-1978. Heres eine Glättung getan, um den Trend zu betrachten. Trendunemployfilter (arbeitslos, filterc (124,112,112,112,112,112,112,112,124), seiten2) trendunemploy ts (trendunemploy, start c (1948,1), freq 12) plot (trendunemploy, mainTrend in der US-Arbeitslosigkeit, 1948-1978, xlab Jahr) Es wird nur der geglättete Trend aufgetragen. Der zweite Befehl identifiziert die Kalenderzeitmerkmale der Serie. Das macht die Handlung eine sinnvollere Achse. Die Handlung folgt. Für nicht-saisonale Serien, Sie Arent gebunden, um über eine bestimmte Spanne glätten. Zur Glättung sollten Sie mit gleitenden Mittelwerten verschiedener Spannen experimentieren. Diese Zeitspannen könnten relativ kurz sein. Das Ziel ist, um die rauen Kanten zu klopfen, um zu sehen, welche Tendenz oder Muster dort sein könnte. Andere Glättungsmethoden (Abschnitt 2.4) Abschnitt 2.4 beschreibt einige anspruchsvolle und nützliche Alternativen zur gleitenden mittleren Glättung. Die Details können skizzenhaft erscheinen, aber das ist okay, weil wir nicht wollen, in vielen Details für diese Methoden zu erhalten. Von den alternativen Methoden, die in Abschnitt 2.4 beschrieben werden, kann die niedrigste (lokal gewichtete Regression) am häufigsten verwendet werden. Beispiel 2 Fortsetzung Die folgende Grafik ist geglättet Trendlinie für die U. S. Arbeitslosigkeit Serie, gefunden mit einem Lowess Glättung, in dem eine erhebliche Menge (23) zu jeder geglätteten Schätzung beigetragen. Beachten Sie, dass dies die Serie mehr aggressiv als die gleitenden Durchschnitt geglättet. Die Befehle wurden als Arbeitslosenzahlen verwendet (Arbeitslosigkeit, Start c (1948,1), freq12) Handlung (Lowess (Arbeitslosigkeit, f 23), Haupt-Lowess-Glättung der US-Arbeitslosigkeitstendenz) Einfache Exponentialglättung Die grundlegende Vorhersagegleichung für eine einzelne exponentielle Glättung ist häufig Gegeben als Hut alpha xt (1-alpha) hat t text Wir prognostizieren, dass der Wert von x zum Zeitpunkt t1 eine gewichtete Kombination des beobachteten Wertes zum Zeitpunkt t und des prognostizierten Wertes zum Zeitpunkt t ist. Obwohl die Methode eine Glättungsmethode genannt wird, wird sie hauptsächlich für Kurzzeitprognosen verwendet. Der Wert von heißt Glättungskonstante. Aus welchem Grund auch immer, 0.2 ist eine beliebte Standard-Auswahl von Programmen. Dies ergibt ein Gewicht von 0,2 auf die neueste Beobachtung und ein Gewicht von 1,2,8 auf die jüngste Prognose. Bei einem relativ kleinen Wert wird die Glättung relativ umfangreicher sein. Bei einem relativ großen Wert ist die Glättung relativ weniger umfangreich, da mehr Gewicht auf den beobachteten Wert gesetzt wird. Dies ist eine einfache, einstufige Prognosemethode, die auf den ersten Blick kein Modell für die Daten erfordert. Tatsächlich ist dieses Verfahren äquivalent zu der Verwendung eines ARIMA (0,1,1) - Modells ohne Konstante. Das optimale Verfahren ist, ein ARIMA (0,1,1) Modell an den beobachteten Datensatz anzupassen und die Ergebnisse zu verwenden, um den Wert von zu bestimmen. Dies ist optimal im Sinne der Schaffung der besten für die bereits beobachteten Daten. Obwohl das Ziel eine Glättung und eine Vorausschätzung ist, bringt die Äquivalenz zum ARIMA-Modell (0,1,1) einen guten Punkt. Wir sollten nicht blind gelten exponentielle Glättung, weil die zugrunde liegende Prozess möglicherweise nicht gut modelliert werden durch eine ARIMA (0,1,1). ARIMA (0,1,1) und exponentielle Glättungsäquivalenz Betrachten wir ein ARIMA (0,1,1) mit Mittelwert 0 für die ersten Differenzen, xt - x t-1: Anfangshut amp amp xt theta1 wt amp amp xt theta1 (xt - hat t) amp amp (1 theta1) xt - theta1hat neigen. Wenn wir (1 1) und damit - (1) 1 zulassen, sehen wir die Äquivalenz zu Gleichung (1) oben. Warum die Methode aufgerufen wird Exponentielle Glättung Dies ergibt die folgenden: Anfangshut amp amp alpha xt (1-alpha) alpha x (1-alpha) Hut amp amp alpha xt alpha (1-alpha) x (1-alpha) 2hat end Weiter Auf diese Weise durch sukzessives Ersetzen des prognostizierten Wertes auf der rechten Seite der Gleichung. Dies führt zu: Hut alpha xt alpha (1-alpha) x alpha (1-alpha) 2 x Punkte alpha (1-alpha) jx Punkte alpha (1-alpha) x1 text Gleichung 2 zeigt, dass der prognostizierte Wert ein gewichteter Durchschnitt ist Aller vergangenen Werte der Serie, mit exponentiell wechselnden Gewichten, wie wir zurück in der Serie bewegen. Optimale Exponentialglättung in R Grundsätzlich passen wir nur einen ARIMA (0,1,1) an die Daten an und bestimmen den Koeffizienten. Wir können die Anpassung der glatten durch Vergleich der vorhergesagten Werte mit der tatsächlichen Reihe untersuchen. Exponentielle Glättung neigt dazu, mehr als eine Prognose-Tool als eine echte glatte verwendet werden, so waren auf der Suche zu sehen, ob wir eine gute Passform haben. Beispiel 3. N 100 monatliche Beobachtungen zum Logarithmus eines Ölpreisindexes in den Vereinigten Staaten. Die Datenreihe ist: Eine Anpassung von ARIMA (0,1,1) in R ergab einen MA (1) - Koeffizienten von 0,3877. So (1 1) 1,3877 und 1- -0,3877. Die exponentielle Glättungsvorhersagegleichung ist Hut 1.3877xt - 0.3877hat t Zum Zeitpunkt 100 ist der beobachtete Wert der Reihe x 100 0.86601. Der vorhergesagte Wert für die Serie zu diesem Zeitpunkt ist also die Prognose für die Zeit 101 hat 1.3877x - 0.3877hat 1.3877 (0.86601) -0.3877 (0.856789) 0.8696 Im Folgenden ist, wie gut die glattere passt die Serie. Sein eine gute Passform. Das ist ein gutes Zeichen für die Prognose, der Hauptzweck für diese glatter. Hier sind die Befehle, die verwendet werden, um die Ausgabe für dieses Beispiel zu erzeugen: Ölindexabtastung (oildata. dat) Diagramm (Ölindex, Typ b, Hauptprotokoll der Ölindex-Reihe) expsmoothfit arima (Ölindex, Auftrag c (0,1,1)) expsmoothfit Um zu sehen, die Arima-Ergebnisse prognostiziert Ölindex - expsmoothfitresiduals vorhergesagten Werten Plot (oilindex, typeb, main Exponential Glättung der Log-of-Oil-Index) Zeilen (Vorhersagen) 1.3877oilindex100-0.3877predicteds100 Prognose für die Zeit 101 Double Exponential Glättung Doppelte exponentielle Glättung könnte verwendet werden, wenn theres (Langfristig oder kurzfristig), aber keine Saisonalität. Im Wesentlichen erzeugt das Verfahren eine Prognose durch Kombinieren von exponentiell geglätteten Schätzungen des Trends (Steigung einer Geraden) und des Pegels (grundsätzlich des Abschnitts einer Geraden). Zur Aktualisierung dieser beiden Komponenten werden jeweils zwei verschiedene Gewichte oder Glättungsparameter verwendet. Das Glättungsniveau entspricht mehr oder weniger einer einfachen exponentiellen Glättung der Datenwerte, und der geglättete Trend entspricht mehr oder weniger einer einfachen exponentiellen Glättung der ersten Differenzen. Das Verfahren entspricht der Anpassung eines ARIMA (0,2,2) Modells, ohne Konstante kann es mit einem ARIMA (0,2,2) Fit durchgeführt werden. (1-B) 2 xt (1theta1B theta2B2) wt. NavigationExponentialbewegungsdurchschnitte für irreguläre Zeitreihen In der Zeitreihenanalyse gibt es oft einen Bedarf an Glättungsfunktionen, die schnell auf Änderungen im Signal reagieren. In der typischen Anwendung können Sie ein Eingangssignal in Echtzeit verarbeiten und so etwas wie den aktuellen Durchschnittswert berechnen oder eine momentane Steilheit erhalten. Aber reale Welt Signale sind oft laut. Bei einigen verrauschten Abtastungen wird der aktuelle Wert des Signals oder seine Steigung stark variieren. Moving Averages Die einfachste Glättungsfunktion ist ein gleitender Durchschnitt. Als Muster kommen Sie in einen Durchschnitt der neuesten N-Werte. Dies führt zu einer Verzögerung 8211 oder Latenz. Ihr Durchschnitt wird immer um die Breite des gleitenden Durchschnitts verzögert. Das obige Beispiel ist relativ teuer zu berechnen. Für jede Probe müssen Sie über die gesamte Größe des Fensters iterieren. Aber es gibt billigere Möglichkeiten 8211 die Summe aller Samples im Fenster in einem Puffer zu halten und die Summe einzustellen, wenn neue Samples kommen: Ein anderer Typ von gleitendem Durchschnitt ist der 8220gewichtete gleitende Durchschnitt8221, der für jede Position im Sample-Fenster gewichtet wird. Vor dem Mitteln multiplizieren Sie jede Probe mit dem Gewicht dieser Fensterposition. Technisch wird dies als 8220convolution8221 bezeichnet. Eine typische Gewichtungsfunktion wendet eine Glockenkurve auf das Probenfenster an. Dies ergibt ein Signal, das stärker auf die Mitte des Fensters abgestimmt ist und noch etwas tolerant gegenüber verrauschten Abtastwerten ist. In der Finanzanalyse verwenden Sie häufig eine Gewichtungsfunktion, die die jüngsten Stichproben mehr bewertet, um einen gleitenden Durchschnitt zu geben, der die jüngsten Stichproben genauer verfolgt. Ältere Proben erhalten zunehmend weniger Gewicht. Dadurch werden die Effekte der Latenz etwas etwas gemildert und dennoch eine gute Glättung gegeben: Mit einem gewichteten Mittelwert müssen Sie immer über die gesamte Fenstergröße für jede Probe iterieren (es sei denn, Sie können die zulässigen Gewichte auf bestimmte Funktionen beschränken). Der exponentielle gleitende Durchschnitt Eine andere Art von Durchschnitt ist der exponentielle gleitende Durchschnitt oder EMA. Dies ist oft verwendet, wo Latenz ist kritisch, wie in Echtzeit Finanzanalyse. In diesem Durchschnitt nehmen die Gewichte exponentiell ab. Jede Probe wird um einige Prozent kleiner bewertet als die nächstfolgende Probe. Mit dieser Einschränkung können Sie den gleitenden Durchschnitt sehr effizient berechnen. Wo alpha eine Konstante ist, die beschreibt, wie die Fenstergewichte im Laufe der Zeit abnehmen. Zum Beispiel, wenn jede Probe mit 80 des Wertes des vorherigen Samples gewichtet werden sollte, würden Sie Alpha 0.2 setzen. Je kleiner das Alpha wird, desto länger ist der gleitende Durchschnitt. (Z. B. wird es glatter, aber weniger reaktiv gegenüber neuen Proben). Die Gewichte für eine EMA mit alpha0.20 Wie Sie sehen können, müssen Sie für jede neue Stichprobe nur den Durchschnitt des vorherigen Mittelwertes berechnen. Also ist die Berechnung sehr sehr schnell. In der Theorie tragen alle vorhergehenden Proben zum gegenwärtigen Durchschnitt bei, aber ihr Beitrag wird mit der Zeit exponentiell kleiner. Dies ist eine sehr leistungsfähige Technik, und wahrscheinlich die beste, wenn Sie einen gleitenden Durchschnitt, der schnell auf neue Proben reagieren wollen, hat gute Glättungseigenschaften und ist schnell zu berechnen. Der Code ist trivial: EMA für irreguläre Zeitreihen Die Standard-EMA ist in Ordnung, wenn das Signal in regelmäßigen Zeitabständen abgetastet wird. Aber was ist, wenn Ihre Proben in unregelmäßigen Intervallen kommen Stellen Sie sich ein kontinuierliches Signal, das in unregelmäßigen Abständen abgetastet wird. Dies ist die übliche Situation in der Finanzanalyse. In der Theorie gibt es eine kontinuierliche Funktion für den Wert eines Finanzinstruments, aber Sie können nur dieses Signal Probe, wenn jemand tatsächlich führt einen Handel. So besteht Ihr Datenstrom aus einem Wert, plus die Zeit, zu der es beobachtet wurde. Eine Möglichkeit, dies zu bewältigen, besteht darin, das irreguläre Signal in ein reguläres Signal umzuwandeln, indem Interpolation zwischen Beobachtungen und Resampling durchgeführt wird. Aber das verliert Daten, und es führt wieder Latenz. Es ist möglich, eine EMA für eine unregelmäßige Zeitreihe direkt zu berechnen: In dieser Funktion geben Sie die aktuelle Stichprobe aus Ihrem Signal und dem vorherigen Sample sowie die Zeit zwischen den beiden und den vorherigen Wert zurück Funktion. So wie gut funktioniert diese Arbeit Um zu zeigen, I8217ve erzeugt eine Sinuswelle, dann probiert es in unregelmäßigen Abständen, und führte etwa 20 Rauschen. Das ist das Signal wird zufällig variieren - 20 aus dem ursprünglichen 8220true8221 Sinus-Signal. Wie gut der irreguläre exponentielle gleitende Durchschnitt das Signal wiederherstellt. Die rote Linie ist die ursprüngliche Sinuswelle 8211, die in unregelmäßigen Intervallen abgetastet wird. Die blaue Linie ist das Signal mit dem Rauschen hinzugefügt. Die blaue Linie ist das einzige Signal, das die EMA sieht. Die grüne Linie ist die geglättete EMA. Sie sehen, dass es das Signal ziemlich gut erholt. Ein wenig wackelig, aber was kann man von solch einem verrauschten Quellsignal erwarten Es ist um 15 nach rechts verschoben, da die EMA etwas Latenz einführt. Je mehr Sie wollen, desto mehr Latenz werden Sie sehen. Aber von diesem können Sie zB eine augenblickliche Steigung für ein lautes unregelmäßiges Signal berechnen. Was können Sie mit dem Hmm8230 tun. Ressourcen:
No comments:
Post a Comment